

UNIVERSITA' DEGLI STUDI DI UDINE DOTTORATO di RICERCA in TECNOLOGIE CHIMICHE ED ENERGETICHE

STUDIO ED ANALISI DELLE CRITICITA' RELATIVE AD ELETTROCATALIZZATORI E OSSIDI DI TERRE RARE IN APPLICAZIONI PER CELLE A COMBUSTIBILE DI TIPO PEMFC E SOFC

#### Tematica

- Studio delle proprietà elettrocatalitiche di elettrocatalizzatori per celle a combustibile.
- Tipologie di celle studiate:
  - PEMFC: Polymer Electrolyte Fuel Cell
  - SOFC: Solid Oxide Fuel Cell
- Studi condotti nell'ambito di due distinti progetti di ricerca:
  - Progetto Et-Cell, Area Science Park (PEMFC)
  - Progetto FISR "Nuovi sistemi di produzione e gestione dell'energia" (SOFC)
- Le condizioni di reazione richieste dagli studi hanno comportato l'allestimento di uno specifico laboratorio.



#### Tematica

- Laboratorio allestito appositamente per eseguire in condizione di reazione:
  - studi elettrici
  - studi catalitici
- Strumentazione in dotazione al laboratorio:
  - potenziostato
  - analizzatore risposta in frequenza (FRA)
  - reattori specifici
  - pannelli appositi per l'alimentazione dei reagenti
  - sistema di controllo da remoto per alimentazione e misurazioni



## LE CELLE A COMBUSTIBILE





REDOX:  $2 H_2 + O_2 \rightarrow 2 H_2O$ 



## Generalità



## Generalità

Fattori di criticità principali comuni alle celle a combustibile:

Cinetiche chimiche di reazione lente a bassa temperatura.

• Disponibilità e grado di purezza dell'idrogeno.



## PEMFC – Polymer Electrolyte Fuel Cell

- Temperature esercizio prossime a T<sub>amb</sub>.
- Catalizzatori a base di metalli pregiati (Pt) per accelerare cinetiche chimiche.
- Utilizzo di H<sub>2</sub> puro (evita avvelenamento catalizzatori da CO).
- Costi importanti.
- Versatilità di applicazioni.



#### DAFC – Direct Alcohol Fuel Cell

- Tecnologia analoga alle PEMFC.
- Alimentazione diretta tramite alcoli (metanolo, etanolo).
- Alcoli comportano drastica diminuzione del rendimento rispetto alimentazione con H<sub>2</sub>.
- Applicazioni in dispositivi con potenze limitate.



## SOFC – Solid Oxide Fuel Cell

- Temperature esercizio elevate (da 600°C-800°C fino 1000°C).
- Catalizzatori metallici a base di Ni.
- Alimentazione con H<sub>2</sub> ottenuto da reforming o direttamente con idrocarburi.
- Materiali a base di ossidi ceramici (costosi).
- Applicazioni in impianti stazionari.



## PROGETTO ET-CELL DAFC

#### AREA SCIENCE PARK (TS)









#### Introduzione

- Sfruttamento energia da fonti rinnovabili (etanolo): celle alimentate ad alcoli (DAFC).
- Attività di ricerca:
  - sintesi di catalizzatori anodici idonei all'ossidazione degli alcoli
  - caratterizzazione morfologica ed elettrochimica dei catalizzatori
  - realizzazione di monocelle DAFC
  - test dedicati per la valutazione delle prestazioni delle celle
- Realizzazione di un prototipo di monocella alimentata ad alcoli.



#### Materiali e metodi: catalizzatori

- Catalizzatori:
  - Pt/C (catodo, riduzione O<sub>2</sub>, *ElectroChem*)
  - leghe bi-metalliche Pt(20%)-Ru(10%)/C (anodo, ossidazione alcoli, laboratorio)
- Sintesi catalizzatori Pt-Ru/C: nanoparticelle di catalizzatore ottenute dopo riduzione e protezione del catalizzatore con PVP. Agenti riducenti: etilenglicole (catalizzatore RD-EG) ed isopropanolo (catalizzatore RD-IP).
- Caratterizzazione strutturale ed elettrochimica:
  - dispersione catalizzatore sul supporto (spettri XRD)
  - effettivo ammontare carico metallico (TGA)
  - attività catalitica (CV)



#### Materiali e metodi: MEA

- Deposizione via aerografo o pennello di inchiostri catalitici direttamente sul gas diffusion layer in Toray<sup>TM</sup> Carbon Paper (aree elettrodi = 5 o 25 cm<sup>2</sup>).
- Carico metallico: 1 mg/cm<sup>2</sup> Pt (catodo), 4 mg/cm<sup>2</sup> Pt-Ru (anodo).
- Membrana: *Nafion*® 117.
- MEA realizzate per pressatura uniassiale a caldo tramite appositi stampi riscaldati (carico 100-150 atm a 100°C ca).



## Materiali e metodi: MEA





Progetto per la realizzazione degli stampi riscaldati

Fotografia di una MEA (area elettrodi 5 cm<sup>2</sup>)



## Risultati e discussione TGA

- Secondo [77], durante la TGA il carbone di supporto viene ossidato e bruciato e la perdita di peso del catalizzatore può essere monitorata in continuo così da risalire all'effettiva quantità di metallo dispersa sul supporto.
- I profili delle TGA evidenziano come il comportamento dei catalizzatori sintetizzati in laboratorio sia sostanzialmente analogo a quello di omologhi prodotti commerciali (*ElectroChem*).





Confronto tra i profili TGA di catalizzatori Pt-Ru/C di origine commerciale e sintetizzati via RD-IP e RD-EG con riduzione



#### Risultati e discussione: spettri XRD

- Valutazione della dispersione del catalizzatore sul supporto carbonioso.
- I catalizzatori RD-EG presentano picchi più larghi rispetto a RD-IP suggerendo un maggior effetto disperdente di EG rispetto a IP e la formazione di cristalliti metallici di dimensioni inferiori.
- I catalizzatori *ElectroChem* presentano picchi intermedi tra quelli relativi al Pt e al Ru puri, evidenziando la formazione della lega bimetallica Pt-Ru.
- I catalizzatori sintetizzati via RD-EG presentano invece entrambi i picchi relativi al Pt e al Ru separatamente, suggerendo una scarsa formazione della lega bimetallica.
- I catalizzatori sintetizzati via RD-IP hanno un profilo più simile a quello del catalizzatore *ElectroChem*, ma presentano picchi molto stretti, indice di scarsa dispersione del catalizzatore sul supporto.



#### Risultati e discussione: spettri XRD



Confronto tra i diffrattogrammi dei catalizzatori a base di Pt-Ru/C e di Pt/C di origine commerciale e sintetizzati via RD-EG e RD-IP

- Valutazione dell'attività catalitica dei catalizzatori Pt-Ru in soluzione di H<sub>2</sub>SO<sub>4</sub> e MeOH.
- Parametri di valutazione: AEA in H<sub>2</sub>SO<sub>4</sub> e potenziale d'inizio ossidazione e corrente di picco in MeOH.







|                     | $H_2SO_4$ | MeOH                     |             |  |
|---------------------|-----------|--------------------------|-------------|--|
| CATALIZZATORE       | AEA       | $\triangle V_{inizioOx}$ | $i_{picco}$ |  |
|                     | (cm / mg) | $(\mathbf{v})$           | $(\Lambda)$ |  |
|                     |           |                          | 2           |  |
| Pt-Ru/C ElectroChem | 115       | 0,04                     | 0,016       |  |
| Pt-Ru/C RD-IP       | 139       | $0,\!18$                 | 0,003       |  |
| Pt-Ru/C RD-IP rid   | 143       | $0,\!14$                 | 0,004       |  |
| Pt-Ru/C RD-EG       | 266       | -0,003                   | 0,009       |  |
| Pt-Ru/C RD-EG rid   | 297       | $0,\!14$                 | 0,008       |  |
| Pt/C ElectroChem    | 213       | 0,33                     | 0,013       |  |



- Il catalizzatore Pt-Ru/C *ElectroChem* presenta i migliori risultati in MeOH e i peggiori in H<sub>2</sub>SO<sub>4</sub>.
- Comportamento opposto per RD-EG e RD-IP.
- Conferma del comportamento dei catalizzatori RD confrontandoli con un catalizzatore di solo Pt/C.
- Il trattamento di riduzione non è stato sufficiente ad ottenere la lega Pt-Ru.



# Risultati e discussione: curve di potenziale



Curva di potenziale per una PEMFC

## Risultati e discussione: curve di potenziale

- Confronto tra una monocella *ElectroChem* e una monocella realizzata in laboratorio, entrambe con catalizzatori Pt/C anodo (1 mg/cm<sup>2</sup>) e Pt-Ru/C catodo (4 mg/cm<sup>2</sup>).
- Curve di potenziale effettuate alimentando H<sub>2</sub> e EtOH.
- Le prestazioni in H<sub>2</sub> sono simili, mentre in EtOH la monocella realizzata in laboratorio presenta risultati decisamente inferiori.
- La causa principale è la mancata formazione della lega bimetallica del catalizzatore anodico Pt-Ru.



## Risultati e discussione: curve di potenziale



Confronto tra le curve caratteristiche di monocelle alimentate in H<sub>2</sub> (T=20°C, Q<sub>aria</sub>=2,5 slpm, p<sub>aria</sub>=p<sub>H2</sub>=1,8 bar)

## Risultati e discussione curve di potenziale



Confronto tra le curve caratteristiche di monocelle alimentate in EtOH (T=50°C,  $Q_{aria}$ =2,5 slpm,  $Q_{EtOH}$ =2,5 młmin,  $p_{aria}$ =1,8 bar)

## Conclusioni

- Le prestazioni del prototipo realizzato non sono in linea con i risultati di letteratura in quanto le cinetiche chimiche legate all'ossidazione dell'etanolo hanno limitato il funzionamento della cella.
- Il principale ostacolo al miglioramento delle prestazione di cella è stata la mancata formazione della lega bimetallica Pt-Ru per il catalizzatore anodico deputato all'ossidazione dell'etanolo.



## PROGETTO FISR SOFC

"Nuovi sistemi di produzione e gestione dell'energia"



#### Introduzione

- Finalità: valutazione <u>simultanea</u> e influenza <u>reciproca</u> delle proprietà catalitiche ed elettriche di catalizzatori anodici.
- Correlazione tra reazione di interfaccia (elettro) e analisi dei prodotti (catalisi) → legge di Faraday.
- Allestimento di un laboratorio dedicato <u>sia</u> alla valutazione della conducibilità elettrica <u>sia</u> dell'attività catalitica.



#### Introduzione

- Impianto costituito da:
  - sistema di controllo da remoto per attività sperimentale e alimentazione reagenti
  - reattori specifici: celle di misura inserite in appositi forni
- Misure <u>elettriche</u>: valutazione della conducibilità mista dei materiali
  - potenziostato
  - FRA (analizzatore risposta in frequenza)
- Misure <u>catalitiche</u>: analisi qualitative e quantitativa dei fumi in uscita dalla cella
  - micro-gascromatografo
  - spettrometro di massa



## Criticità nelle SOFC

- Separazione tra i flussi di gas anodici e catodici.
- Le sigillature (*sealing*) si dividono in:
  - flessibili (rammolimento e adesione di metalli preziosi a 850°C-900°C)
  - rigide (paste ceramiche indurenti)
- Gli studi realizzati in laboratorio hanno suggerito l'allestimento di 2 diversi reattori:
  - uno con *sealing* flessibile per un rapido *screening* e recupero delle celle
  - uno con *sealing* rigido indispensabile per le misure elettrocatalitiche → flussi in uscita separati e temperature di esercizio di 600°C-700°C



## Reattore con sigillo flessibile



Reattore realizzato dalla MaterialsMates® con camere separate da sigillo anulare flessibile in oro ed alimentate entrambe in flusso di gas controllato.



Schema funzionale: caricamento della cella con relativo sigillo e recupero a fine misura.



## Reattore con sigillo rigido



Schema realizzativo sistema di alimentazione e di analisi dei gas in uscita dalla cella.

Alimentazione in H<sub>2</sub> e idrocarburi leggeri con umidificazione per l'analisi del comportamento anodico nella reazione di *reforming* interno.



## Reattore con sigillo rigido



Schema costruttivo reattore a *sealing* rigido con camere separate. Camera anodica alimentata in flusso di  $H_2$  o idrocarburi leggeri, camera catodica in aria statica.



## Attività sperimentale

- Studio dell'effetto dell'H<sub>2</sub>O<sub>2</sub> sulle proprietà redox ed elettriche del Ce<sub>0,8</sub>Sm<sub>0,2</sub>O<sub>1,91</sub>.
- Duplice obiettivo:
  - sintetizzare un materiale elettrolitico sostitutivo di YSZ
  - realizzare un supporto anodico adatto all'alimentazione diretta o dopo *reforming* di idrocarburi leggeri per applicazioni in IT-SOFC
- La scelta dell'ossido misto di cerio samario deriva da studi pregressi all'interno del laboratorio.
- La percentuale di drogaggio dipende dal miglior compromesso tra proprietà meccaniche ed elettriche.

#### Sintesi e caratterizzazione

- Processo di sintesi: coprecipitazione modificata dall'aggiunta dell'H<sub>2</sub>O<sub>2</sub> alla soluzione acquosa dei corrispondenti nitrati.
- Effetto sulle proprietà di sinterizzazione e di conducibilità mista di:
  - concentrazione di H<sub>2</sub>O<sub>2</sub>
  - pH della precipitazione
  - temperatura e tempo di invecchiamento
- Caratterizzazione polveri:
  - analisi BET
  - diffrazione ai raggi X
  - analisi TGA
  - riduzione in temperatura programmata TPR
  - microscopia SEM
- Misure di conducibilità:
  - spettri EIS
  - microscopia SEM



#### Risultati e discussione: titolazione



Curve di titolazione per i campioni sintetizzati a riflusso con tenori variabili di  $H_2O_2$  dal 3% al 10%.

L'aggiunta H<sub>2</sub>O<sub>2</sub> favorisce la coprecipitazione totale degli idrossidi a pH inferiori.

#### Risultati e discussione: spettri IR



Spettri IR dei campioni sintetizzati a riflusso con tenori variabili di  $H_2O_2$  dal 3% al 10%.

Spettri qualitativamente uguali: no legami perossidici.

Aumento intensità banda a 3400 cm<sup>-1</sup>:  $H_2O_2$  rende il precipitato più idrolizzato.



#### Risultati e discussione: spettri XRD



Spettri XRD dei campioni sintetizzati a riflusso con tenori variabili di  $H_2O_2$  dal 3% al 10%.

No  $H_2O_2$ : fase non omogenea.

Aggiunta di H<sub>2</sub>O<sub>2</sub>: allargamento picchi, formazione cristalliti dimensioni inferiori.



#### Risultati e discussione: profili TPR



Confronto tra i profili TPR dei materiali con e senza trattamento a riflusso con diverso tenore di  $H_2O_2$  (3% e 10%).

Aggiunta  $H_2O_2$ : riducibilità a temperature inferiori, miglioramento proprietà morfologiche e incremento area superficiale.



#### Risultati e discussione: profili TPR



Confronto tra i profili TPR di materiali con e senza trattamento a riflusso e  $H_2O_2$  (10%) sottoposti a rampe successive con permanenza in ossidazione (aria) a 773K (1h).

Valutazione resistenza termica dei materiali: aggiunta  $H_2O_2$  + riflusso minor disattivazione, maggior resistenza rispetto materiale tradizionale.

Caratteristiche morfologiche e superficiali delle polveri sintetizzate

| Campione        | SA BET    | Porosità         | OSC              | TPR     | Cristalliti      |
|-----------------|-----------|------------------|------------------|---------|------------------|
| 1               | $(m^2/g)$ | $(\mathring{A})$ | $(\mu molO_2/g)$ | (% red) | $(\mathring{A})$ |
| R 0             | 21        | 101              | 153              | 48      | 178              |
| R 3             | 61        | 96               | 347              | 49      | 59               |
| R 10            | 61        | 99               | 357              | 50      | 60               |
| m R~3~ppt       | 57        | 78               | 254              | 44      | 75               |
| NoR $0$         | 7         | 72               | 144              | 35      | 228              |
| NoR 3           | 10        | 77               | 159              | 37      | 212              |
| NoR $10$        | 20        | 88               | 162              | 38      | 200              |
| NoR 3 pH $6,5$  | 12        | 105              | 127              | 24      | 216              |
| NoR 10 pH $5,5$ | 15        | 97               | 136              | 35      | 221              |
| Ossalati        | 5         | 74               | 60               | 33      | 256              |
| NexTech         | 8         | 104              | 11               | 34      | 410              |

<u>Nota</u>: 0, 3, 10 indicano il rapporto molare  $[H_2O_2]/[Ce^{3+}, Sm^{3+}]$ 



#### Risultati e discussione: anodi



Anodi ottenuti per deposizione via *screen printing* di *ink* catalitici a base di Ni (50%). Microstruttura anodica di un materiale sintetizzato per coprecipitazione modificata (a sinistra).

Struttura morfologica più omogenea rispetto ad una sintesi tradizionale (sotto).





Tipico spettro EIS con relativo circuito equivalente:  $R_b$  (resistenza di bulk, *intra*-grano),  $R_{gb}$  (resistenza di bordo grano, *inter*-grano),  $R_{el}$  (resistenza elettrodo).



Proprietà di sinterizzazione e di conducibilità

| Campione                 | Densità | $\sigma^*_{600^{\circ}C}$ | $\sigma^*_{700 \circ C}$ | $\sigma^*_{800^{\circ}C}$ | $E_{att}$ |
|--------------------------|---------|---------------------------|--------------------------|---------------------------|-----------|
|                          | (%)     | (S/cm)                    | (S/cm)                   | (S/cm)                    | (eV)      |
| R 0                      | 68      | $1,95 \cdot 10^{-3}$      | $7,64 \cdot 10^{-3}$     | $2,14 \cdot 10^{-2}$      | $0,\!66$  |
| R 3                      | 91      | $4,04\cdot 10^{-4}$       | $5,41\cdot10^{-4}$       | $1,79 \cdot 10^{-3}$      | 0,91      |
| R 10                     | 97      | $1,80 \cdot 10^{-3}$      | $7,03\cdot10^{-3}$       | $5,91 \cdot 10^{-2}$      | $1,\!56$  |
| m R~3~ppt                | 95      | $1,37 \cdot 10^{-3}$      | $5,60 \cdot 10^{-3}$     | $1,60 \cdot 10^{-2}$      | $1,\!08$  |
| NoR $0$                  | 89      | $9,66 \cdot 10^{-3}$      | $2,88 \cdot 10^{-2}$     | $1,79 \cdot 10^{-1}$      | 1,32      |
| NoR 3                    | 94      | $5,91 \cdot 10^{-3}$      | $1,79 \cdot 10^{-2}$     | $1,07 \cdot 10^{-1}$      | $1,\!14$  |
| NoR $10$                 | 89      | $2,24 \cdot 10^{-3}$      | $7,38\cdot10^{-3}$       | $1,67 \cdot 10^{-2}$      | 0,91      |
| NoR 3 pH $6,5$           | 92      | $9,61 \cdot 10^{-3}$      | $2,67 \cdot 10^{-2}$     | $1,38 \cdot 10^{-1}$      | 1,06      |
| NoR $10 \text{ pH } 5,5$ | 92      | $7,23\cdot10^{-3}$        | $1,94 \cdot 10^{-2}$     | $1,17 \cdot 10^{-1}$      | 1,08      |
| Ossalati                 | 88      | $7,06 \cdot 10^{-3}$      | $2, 12 \cdot 10^{-2}$    | $4,69 \cdot 10^{-2}$      | 0,85      |
| NexTech                  | 99      | $9,72 \cdot 10^{-3}$      | $2,91 \cdot 10^{-2}$     | $1,53 \cdot 10^{-1}$      | $1,\!18$  |

 $\sigma^* =$  conducibilità mista corretta secondo porosità [116]  $E_{att} =$  energia di attivazione calcolata secondo Arrhenius



400000

4 0 0 200 kHz

1000000

Spettri EIS collezionati a 300°C in condizioni di OCV.

Resistenza a bordo grano:  $H_2O_2$  + riflusso (a sinistra) >> sintesi tradizionali (sopra).



3000000

4000000

5000000

2000000





Confronto tra micrografie SEM

Materiali sintetizzati a riflusso con  $H_2O_2$ : grani piccoli e compatti (a sinistra).

Sintesi tradizionale (in basso a sinistra) e di origine commerciale (in basso a destra): grani più grossi.





- Configurazione elettrolitica: aggiunta di H<sub>2</sub>O<sub>2</sub> con trattamento a riflusso non migliora la conducibilità.
- Resistenza a bordo grano componente preponderante (spettri EIS a 300°C).
- Analisi comparata microstruttura tramite SEM: il riflusso dà origine a materiali che sinterizzano in una struttura cristallina con grani piccoli e compatti → aumento contributo resistenza a bordo grano.



## Conclusioni

- La coprecipitazione modificata dall'aggiunta di H<sub>2</sub>O<sub>2</sub> favorisce:
  - la formazione di soluzioni solide di  $Ce_{0,80}Sm_{0,20}O_{1,91}$  a bassa temperatura
  - la sintesi di materiali nanocristallini con migliori proprietà redox
- L' aggiunta di H<sub>2</sub>O<sub>2</sub> permette di ottenere materiali differenti in funzione dei parametri di sintesi considerati.
- L'effetto sinergico dell'aggiunta di H<sub>2</sub>O<sub>2</sub> con il trattamento a riflusso offre vantaggi nella preparazione di supporti anodici per IT-SOFC, mentre la sintesi tradizionale è più adatta a realizzare materiali elettrolitici.

